

Life cycle assessment of synthetic natural gas production from captured cement's CO₂ and green H₂

M. Bacatelo ^{a,*}, F. Capucha ^{a,1}, P. Ferrão ^b, F. Margarido ^b, J. Bordado ^c

^a c5Lab – Sustainable Construction Materials Association, Linda-a-Velha 2795-242, Portugal

^b Center for Innovation, Technology and Policy Research – IN+, Instituto Superior Técnico, University of Lisbon, Lisboa 1049-001, Portugal

^c Centro de Recursos Naturais e Ambiente - CERENA, Av. Rovisco Pais 628, Lisboa 1049-001, Portugal

ARTICLE INFO

Keywords:

Cement
CCU
Calcium-looping
LCA
Methane

ABSTRACT

Research on the environmental benefits of carbon capture and utilization (CCU) in cement production so far, has predominantly emphasized energy efficiency enhancements and CO₂ emission reductions at a CCU product level, neglecting broader environmental consequences for the sector. This research broadens this perspective by providing an extensive life cycle assessment (LCA) of a circular Portland cement (CPC) model. Synthesized methane is used as input fuel through green hydrogen and calcium-looping (CaL) post-combustion captured CO₂ from cement flue gas. Comparative analysis with ordinary Portland cement (OPC) reveals significant reductions in climate change and fossil resource use environmental impact categories. However, trade-offs are evident in acidification, water use, and minerals and metals resource consumption. The electrolysis system is a critical contributor due to the high electricity demand for hydrogen production, and its environmental impact depends largely on the renewable electricity source. The wind-based electrolysis model yields the most favourable results, followed by mixed (50% solar – 50% wind) and solar scenarios. These findings offer valuable insights for the cement industry, supporting stakeholders decision making on the adoption of sustainable circular production methods.

1. Introduction

The cement manufacturing industry is acknowledged as a significant contributor to carbon dioxide emissions, exacerbating climate change. As nations set their carbon neutrality targets for 2050, as requested in the EU Green Deal, it becomes imperative to investigate sustainable measures for mitigating the environmental impact of energy-intensive industries, including the cement sector. Identifying innovative solutions to minimise this impact is both a priority and a challenge. Carbon capture, utilization and storage (CCUS) has emerged as a promising solution to reduce CO₂ emissions from cement production [1].

Among various CCUS technologies, post-combustion calcium-

looping (CaL) CO₂ capture has garnered considerable attention due to its suitability in the cement sector. Cement plants benefit from well-established limestone handling infrastructure, simplifying CaL integration into existing operations. Moreover, using resulting CaO-based sorbents in cement production holds potential for enhancing circularity and resource efficiency [2,3]. A substantial drawback emerges with the conventional use of coal as a fuel source in CaL systems, which significantly exacerbates CO₂ emissions, counteracting its intended environmental benefits [2].

Captured CO₂ can be used as a feedstock for fuel synthesis when combined with hydrogen. This process is central to the “Power-to-Gas” (P2G) pathway, which specifically focuses on utilizing electrolysis for

Abbreviations: ATIC, Technical Association for the Portuguese Cement Industry; BAT, Best Available Technique; BAU, Business-As-Usual; CaL, Calcium-looping; CCS, Carbon Capture and Storage; CCU, Carbon Capture and Utilization; CCUS, Carbon Capture, Utilization and Storage; CPC, Circular Portland Cement; EPD, Environmental Product Declaration; GLO¹, Global; LCA, Life Cycle Assessment; LCI, Life Cycle Inventory; LCIA, Life Cycle Impact Assessment; OPC, Ordinary Portland Cement; P2G, Power-To-Gas; PPA, Power-Purchase Agreement; PV, Photovoltaic; RER¹, Europe; RES, Renewable Energy Source; SNG, Synthetic Natural Gas; SOEC, Solid Oxide Electrolysis Cells; TRL, Technology Readiness Level, ¹ SimaPro software region codes.

* Correspondence to: c5Lab, Sustainable Construction Materials - Collaborative Laboratory Edifício Central Park, Rua Central Park 6, Linda-a-Velha 2795-242, Portugal.

E-mail addresses: mbacatelo@c5lab.pt (M. Bacatelo), fcapucha@c5lab.pt (F. Capucha).

¹ These authors contributed equally to this work.

<https://doi.org/10.1016/j.jcou.2024.102774>

Received 2 October 2023; Received in revised form 9 April 2024; Accepted 17 April 2024

Available online 3 May 2024

2212-9820/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC license (<http://creativecommons.org/licenses/by-nc/4.0/>).

hydrogen production [4]. Water electrolysis is strategically chosen due to its potential to harness renewable energy sources, such as wind and solar power, facilitating the production of green hydrogen. This approach differs from traditional hydrogen production methods that mainly depend on fossil fuels, which contribute to carbon emissions [5]. A noteworthy strategy involves the application of power-purchase agreements (PPAs), which enable the use of renewable electricity without physical proximity constraints between the electrolysis plant and renewable energy sources (RES) [6].

Green hydrogen production, however, poses some challenges. As the demand for hydrogen rises, the inefficiencies in its production from RES become more pronounced, especially on an industrial scale where electricity consumption increases accordingly [6,7]. Furthermore, renewable energy technologies, despite their benefits, carry their own environmental impacts, encompassing raw materials extraction, land use and greenhouse gas (GHG) emissions throughout their life cycles. Consequently, a life cycle assessment (LCA) is imperative in sustainability research, for a quantitative evaluation of the environmental footprint of diverse technologies [8].

Traditionally, cement industry research on CCUS has prioritized economic analysis, a critical factor influencing the adoption of carbon capture technologies. While environmental benefits are the motivation for decision-makers to evaluate these technologies, previous investigations have primarily emphasised improvements in energy efficiency and CO₂ emission reductions, neglecting a comprehensive assessment of the wider environmental impacts [9–13]. Furthermore, many research efforts concentrate solely on the capture phase, frequently employing amine absorption, without conducting a holistic evaluation of subsequent CO₂ pathways: carbon capture and utilization (CCU) or carbon capture and storage (CCS). Notably, studies exploring these aspects have predominantly favoured CCS, with limited attention to CCU. Those examining CO₂ utilization have typically compared the environmental impact of CCU products, like synthetic natural gas (SNG), against conventional counterparts (e.g., natural gas), primarily at the product level, sidestepping an evaluation of the direct technological integration's industry-wide implications [9,14,15].

This paper aims to address these research gaps through a comprehensive comparative LCA study of cement production. Its primary focus lies in contrasting the environmental impact of traditional cement production methods against a novel circular CCU model, which integrates P2G technologies. Additionally, a thorough analysis of the use of alternative RES, namely wind and PV energy, along with their combined application to enhance energy security, is conducted.

2. Methodological framework

The methodological framework adhered to specific LCA guidelines tailored for CO₂ utilisation, which are more restrictive than the general ISO requirements. This approach aimed to enhance transparency and foster comparability among LCA studies [16,17]. An attributional modelling approach was employed, encompassing four intertwined phases: goal and scope definition, life cycle inventory (LCI), life cycle impact assessment (LCIA) and interpretation.

During the goal and scope definition phase, the research's foundation, comprising its objectives, scenarios, boundaries, and declared unit of analysis, underwent comprehensive evaluation. In the LCI phase, both primary and secondary data were used as inputs to establish mass and energy balances, ensuring data accuracy and completeness. Moving into the LCIA phase, the material flows from the inventory were translated into impact categories using the specialised software Simapro 9.5, enabling the assessment of potential environmental burdens associated with each modelled scenario. Finally, in the interpretation phase, the extent to which the circular model could mitigate the environmental impacts tied to conventional cement production was quantified.

However, all phases of the LCA are intrinsically interconnected. Modifications made in one phase affect subsequent phases; for instance,

initial data availability was not entirely known at the outset of the LCA. Therefore, an iterative approach was systematically applied and implemented.

2.1. Goal and scope

The primary objective of this LCA is to conduct a rigorous quantitative analysis of the environmental impact associated with the production of a Circular Portland Cement (CPC) proposed model, contrasting it with Ordinary Portland Cement (OPC). Moreover, within the CPC model, a comparative assessment of the use of alternative RES, specifically wind and solar PV, along with their combined application is performed. In parallel, a hot-spot analysis is executed to pinpoint the systems displaying the most pronounced environmental impacts. Through this comprehensive evaluation, the research aims to provide insights into the environmental performance of the proposed CPC production model and its renewable energy source, while concurrently identifying critical contributors to the overall environmental footprint compared to the current OPC model.

Cement serves as an intermediary product with an undetermined end-use. Consequently, a mass-based declared unit of 1 metric tonne was chosen. Fig. 1 illustrates the elements and cradle-to-gate system boundaries for both OPC and CPC simplified production models.

The OPC serves as the reference for the business-as-usual (BAU) cement production model. In the circular cement model, CO₂ emissions from the cement production unit are captured using CaL post-combustion technology. This captured CO₂ is then combined with H₂ produced through water electrolysis driven by RES, to obtain SNG rich in methane. This SNG acts as a fuel source for both cement production and the CaL plant, replacing conventional fuels.

Circularity is further enhanced by using the oxygen by-product from the electrolysis process to supply the CaL unit. This substitution removes the need for the conventional energy-intensive air separation unit (ASU) in the CaL unit. A critical assumption underlying this model is the complete transfer of all emissions, typical of industrial-scale cement plants, to the CO₂ capture unit. It is noteworthy that this assumption significantly influences mass and energy balances and subsequent LCIA.

2.2. Life cycle inventory

LCI involves a systematic inventory of the input and output of energy and material flows during the life cycle. It was constructed by integrating primary data with secondary data drawn from stoichiometric calculations and literature sources. These sources encompass process simulations involving mass and energy balance analyses and the utilization of datasets aligned with the closest resembling technology/process/material available in the ecoinvent database version 3.9.1 [18]. The models analysed were built as a function of the relevant systems.

The LCI was framed in the Portuguese cement sector context, which displays a notable degree of homogeneity, even though it consists of multiple plants from two different companies. This uniformity arises from the widespread adoption of a consistent production method across all units. Although there are variations in the specificities of production, such as capacity, equipment, quarry mineral attributes, and auxiliary material consumption, the sector shares fundamental technological characteristics. Primary data applied in this research were derived from all six cement plants operating in mainland Portugal.

Given the confidential nature of individual cement plant data, a meticulous anonymization process was imperative. To facilitate this, automated spreadsheets were customized for each company, enabling them to securely share their data with a neutral third-party entity, specifically the technical association for the Portuguese cement industry (ATIC). Upon receiving the data from all six factories, ATIC merged the information into a consolidation worksheet. Subsequently, the anonymized dataset was generated, combining inputs and outputs obtained from the six plants to form a comprehensive and representative model

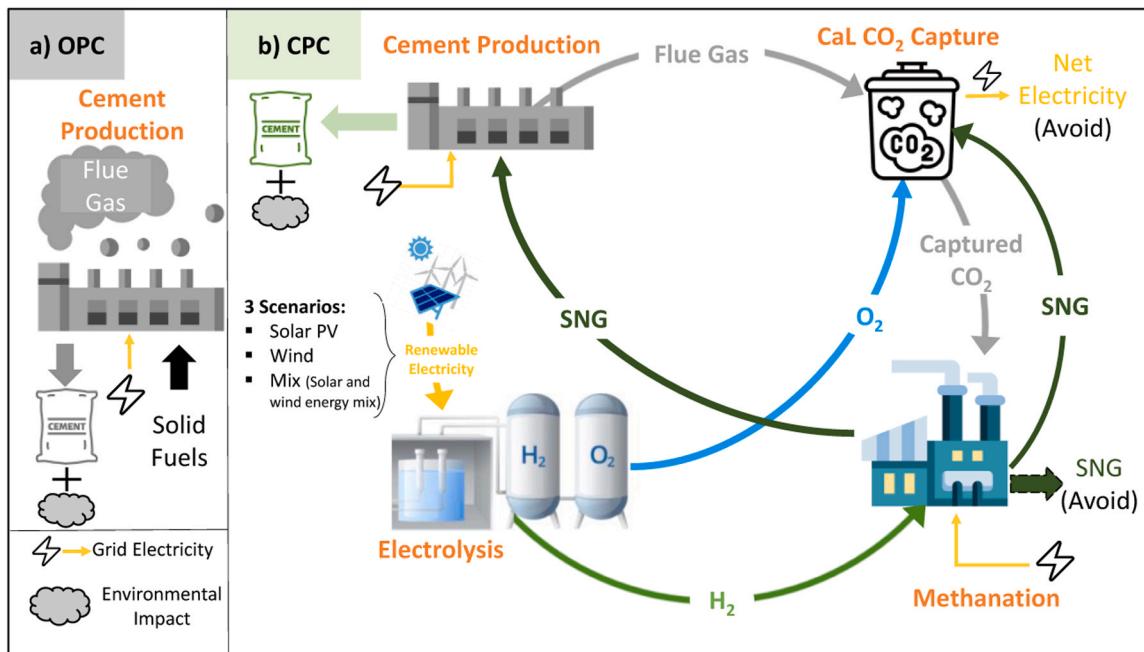


Fig. 1. System elements and boundaries for cement models: (a) OPC; (b) CPC.

for the sector.

In line with strict confidentiality regulations, only data that is at least two years old from the current analysis year can be legally used. Given that the core project commenced in 2020, the most recent legally usable

dataset available pertains to the year 2018. Expert evaluation from the industrial partners indicates that the sector has undergone no perceptible changes during this interval, with no notable technological innovations introduced within the past four years. Consequently, the

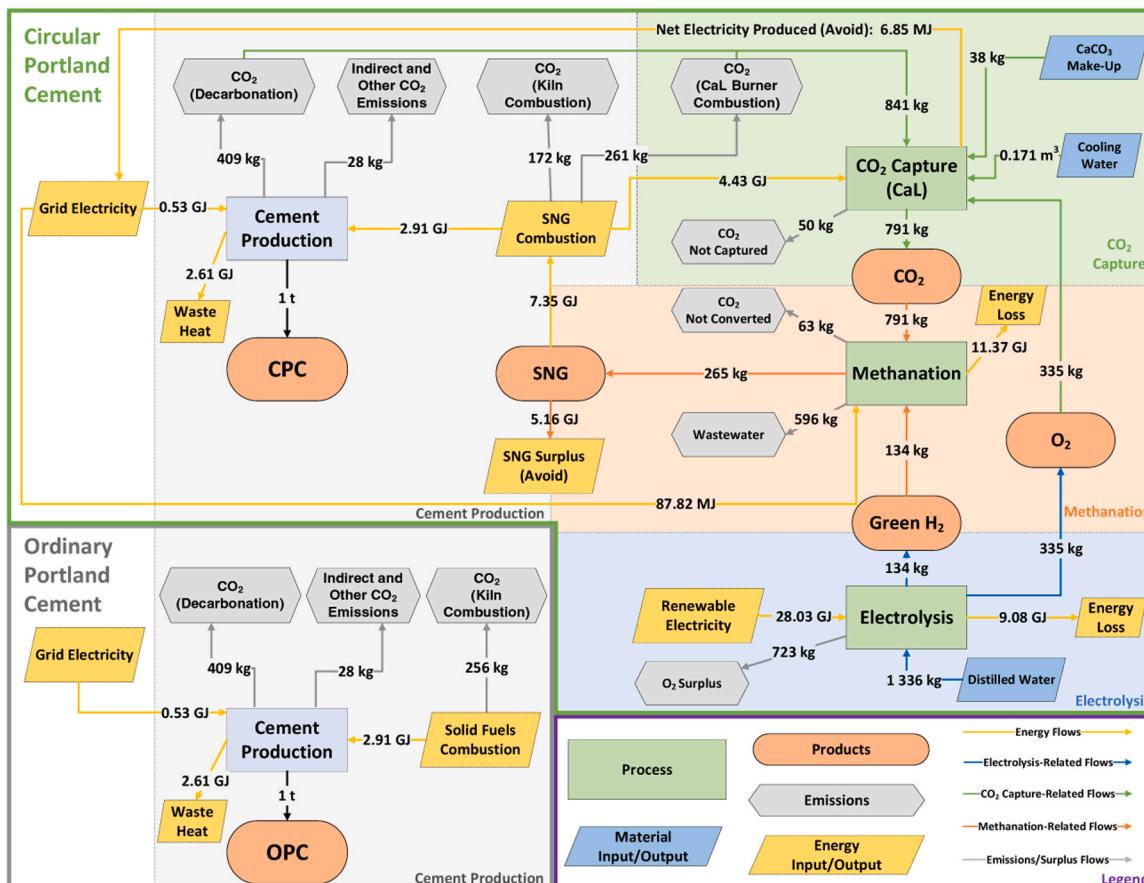


Fig. 2. Mass and energy balances for each model.

datasets specific to the year 2018 are deemed suitable for modelling the BAU Portland cement manufacturing process.

In situations where data specific to Portugal was unavailable, European average data (e.g., "RER" or "Europe Without Switzerland" in Ecoinvent) was employed. When European average data was also inaccessible, a proxy region would be used, such as "Switzerland" was utilized. If all else failed, global average (GLO) data was the fallback option, but the situations where these applied were marginal and do not significantly affect the results.

The grid electricity generation mix in Portugal was applied to both models, following data from [19]. Comprehensive inventory data, including inputs, outputs, and specific assumptions for each system, can be found in the Supplementary Information. Fig. 2 provides a streamlined overview of the mass and energy balances for each model.

2.2.1. Ordinary Portland cement

The OPC production, represented in the "Cement Production" block of Fig. 1, comprises a three-stage process: raw materials preparation, clinker production and grinding with additional components to produce cement. Initially, primary and secondary raw materials are blended to create a homogeneous powder. Naturally occurring calcareous deposits, such as limestone and marl, supply the calcium carbonate required for cement production. **Supplementary materials**, such as sand, shale and clay are also extracted to supplement silica, alumina and iron oxide to the raw mix. Quarrying heavy-duty machines extract these materials, which are subsequently crushed and transported to the cement plant [4, 20,21]. As a foreground process, the internal quarries activities were modelled in higher detail to include the extraction procedure. Processes powered by grid electricity do not generate on-site (direct) emissions, however, they are considered as sources of indirect emissions.

Subsequently, the material undergoes grinding and enters a rotary kiln, passing through a pre-heater and pre-calciner. Fuels are employed to gradually heat the material until calcination occurs at approximately 900 °C, releasing CO₂ from calcium carbonate (CaCO₃). At temperatures reaching up to 1450 °C, clinker forms as CaO reacts and agglomerates with silica, alumina, and iron oxide [4,20,21]. Using data directly sourced from producers, a clinker-to-cement ratio of 0.779 was assumed, resulting in the calcination reaction contributing to 61 % of the total direct CO₂ emissions in cement manufacturing, releasing approximately 409 kgCO₂/t_{cement}. These emissions are then combined with those arising from fuel combustion, responsible for 256 kgCO₂/t_{cement}, constituting 39 % of the total direct emissions. Given the essential role of calcination in clinker production, a significant portion of these emissions is unavoidable.

A mix of different fuels was considered, guided by authentic data supplied by manufacturers. Petcoke is the most common fuel used in Portugal, although alternative fuels, including used tires and wood waste, are extensively employed. On average, the combination of residue-derived fuels (RDF) and biomass contribute to approximately 41 % of the calorific input.

Ultimately, the hot clinker is cooled rapidly using a grate cooler and is temporarily stored between production and grinding stages. Clinker is subsequently mixed with mineral additives, such as gypsum or fly ash, to produce blended cement. The final product is homogenized, stored in silos, and later dispatched to customers for transportation [4].

The Portuguese cement industry employs three transportation methods: road, maritime and rail. The freight transport of fuels and both externally-sourced natural and secondary raw materials to the plant gates to produce one declared unit was included in the model.

2.2.2. Circular Cement

In the cement circular model, there are two by-products produced besides cement: the SNG and electricity. Allocation is a method used to determine how the environmental burden of multiple products should be allocated. However, the ISO 14044 guidelines recommend minimizing the use of allocation by either dividing the unit process or expand

the product system. In SimaPro, the "avoided products" method was employed to expand the system. This involves subtracting the impacts of the products avoided (as they are provided in the system considered) from the total impacts. System expansion operates on the principle that if the primary system generates, for example, surplus electricity that is fed back to the grid, it reduces the need to produce electricity at an alternative power plant [22].

In the current research, the environmental burden is entirely attributed to the cement product, while the electricity and SNG surplus produced are considered avoided products. Consequently, the cement product receives an environmental credit for avoiding this impact, while also bearing the additional emissions associated with the CO₂ capture, electrolyser and methanation units.

The CPC model encompasses four interconnected systems forming a closed loop: "Cement Production" and three P2G systems, namely "CaL CO₂ Capture", "Electrolysis" and "Methanation". This "Cement Production" system has the same energy requirements of the OPC production, including electricity for grinding and loading equipment, as well as fuels for heating in the pre-calciner and rotary kiln. The system was therefore similarly simulated in SimaPro. Notably, while the OPC model considered the utilization of the solid fuel mix employed in the Portuguese cement industry, the CPC model integrates the SNG generated from the "Methanation" unit.

To capture the CO₂ emitted from the flue gas during clinker production at an industrial scale, post-combustion CaL technology is applied. It relies on the reversible carbonation reaction, employing two interconnected circulating fluidized bed reactors, namely the carbonator and the calciner. Initially designed in the software "Aspen Plus" for a hypothetical cement plant conforming to the European Best Available Technique (BAT) standard for cement manufacturing [23], this CaL configuration was subsequently tailored to suit a specific Portuguese cement plant [24] and modelled in SimaPro accordingly in the present paper. The flue gases are sent to a carbonator, where CO₂ reacts with the CaO-based sorbent and forms CaCO₃ at around 650°C. The calcium carbonate is transferred to the calciner, where oxy-combustion of SNG is carried out to reach a temperature above the calcination equilibrium temperature (950°C). Note that the combustion process uses a mixture of flue gas (mainly CO₂ and H₂O) and pure oxygen, instead of air, to reduce nitrogen content. This saves energy for the calcination process, either lowering flue gas volume or increasing kiln capacity. Additionally, the temperature is controlled by mixing the oxidant with the combustion gases, resulting mainly in CO₂ and H₂O. After water condensation, a highly concentrated CO₂ stream is extracted [25].

These processes are aggregated in the "CaL CO₂ Capture" system, which generates a significant amount of thermal power by calciner combustion that is recovered as high-temperature waste heat for electricity production [23,24,26,27]. Note that the SNG fuel used is produced in the "Methanation" unit while the required oxygen is obtained directly through the water electrolysis instead of the ASU.

The potential application of the spent sorbent purge from the CaL system as a substitute for limestone in clinker production has been investigated. The feasibility of this use largely depends on the purge composition, particularly its sulphur (CaSO₄) content as excessive sulphur levels are known to compromise clinker quality. Consequently, the scope for utilizing a purge with high sulphur content is constrained [2]. Notably, the present study deliberately excluded the potential advantages of substituting limestone with the purge in the cement production process, thereby ensuring a conservative estimation.

Alkaline water electrolysis (AEL) technology was selected due to its suitability for large- applications [12,28–30]. The mass and energy balances were based on a model created in the HOMER open-source software by [12]. The "Electrolysis" system utilizes two electrodes immersed in an alkaline solution, separated by a diaphragm, to facilitate water splitting into H₂ and O₂ through the application of an electric current. The system therefore relies on distilled water and renewable energy as the main inputs to produce green hydrogen for SNG

production and oxygen for CaL CO₂ capture [28,31,32]. Three scenarios for renewable energy production were considered: solar, wind and a combination of both solar and wind energy.

The “Methanation” system uses captured CO₂ from the “CaL CO₂ Capture” system, green H₂ from the “Electrolysis” system and electricity to produce the SNG main output through CO₂ hydrogenation [12,33]. The SNG produced is recirculated for clinker production and to the “CaL CO₂ Capture”. Mass and energy balances relied on the catalytic process for SNG production through CO₂ hydrogenation developed in Aspen Plus by [12].

The “CaL CO₂ capture” and “Methanation” infrastructures were incorporated in the SimaPro model through proxy processes. The “Electrolysis” system infrastructure included both the AEL electrolyser infrastructure inventory from [34,35], as detailed in the **Supplementary Information**, and the associated renewable energy technology infrastructure, utilizing generic SimaPro processes modelled for Portugal.

The circular model faces limitations due to varying technology readiness levels (TRL). The methanation plant operates at TRL 6 [36, 37], the CaL CO₂ Capture technology at TRL 7 [38], and the AEL electrolyser at TRL 8 [39,40]. Key assumptions are outlined in **Table 1**, and comprehensive inventory data, emissions, detailed assumptions, and calculations can be found in the **Supplementary Information**.

3. LCIA: Results and discussion

The impact assessment was performed in Simapro software employing the “EN15804 + A2 Method”, an adaptation of the European Commission’s “Environmental Footprint 3” method customized for Environmental Product Declarations (EPD) of construction products. Core environmental impact indicators were selected in accordance with EN 15804:A2 requirements [46]. Detailed scenario results can be found in **Table 2**.

The comparison of environmental impacts between the OPC and CPC models reveals notable disparities across various categories. In alignment with the cement industry’s expectation to have this technology

Table 1
LCI base assumptions.

System	Assumption	Value	Reference
General	Operational lifetime [years]	25	[3,41]
Cement	Operating hours [hours/year]	8 000	[13]
Production	Average annual clinker production capacity [t/year]	884,947	Primary data provided by ATIC
	Clinker/Cement Ratio [t _{clinker} /t _{cement}]	0.779	
	Direct CO ₂ emissions [tCO ₂ /t _{clinker}]	0.823	
CaL CO ₂ Capture	CaL CO ₂ Capture Ratio	0.94	[13]
	Fuel Required [GJ/t _{clinker}]	5.690	[2]
	Net Surplus Electricity	0.270	
	Production [MW]		
	Cooling Water Required [m ³ /kgCO ₂ Captured]	2.16E-04	
	Oxygen Required [t/t _{clinker}]	0.430	
	Circulating CaO to CO ₂ in the flue gas molar ratio (F ₀ /FCO ₂)	0.02	
Electrolysis	AEL: H ₂ O to H ₂ Mass Ratio	10.00	[42]
	Electricity for Electrolysis (AEL) [kWh/t _{H2}]	58,270	[43]
	Energy Efficiency	0.68	
	Wind-to-Solar Electricity Ratio (WtS)	0	Solar Scenario
		0.5	Mix Scenario
		1	Wind Scenario
Methanation	CO ₂ to CH ₄ Conversion Efficiency	0.92	[12]
	Electricity for Methanation [kWh/GJ _{SNG}]	1.95	[44]
	Energy Efficiency	0.53	[45]
	CO ₂ Emissions/GJ _{SNG} [tCO ₂ /GJ]	0.0589	[18]

contributing to mitigate its climate change impact, the circular model exhibits promising outcomes, achieving a reduction of up to 513 kg CO₂-eq in the most favourable scenario (wind-based electrolysis). These reductions range from 17 % to 68 % across different scenarios, as shown in **Fig. 3**.

The analysis of the climate change components show an overwhelming dominant contribution from fossil CO₂, exceeding 98 % across all scenarios. Notably, it is important to clarify that the carbon originating from calcination reactions, although of mineral origin, is classified as “fossil” for LCIA purposes. Contributions from biogenic sources and land use are found negligible in all models. In the CPC models, the decrease in biogenic contribution is attributed to the exclusion of biomass fuels, whereas the increase in land use impact is linked to the substantial land requirements of RES, including both PV and wind energy. Nonetheless, these variations within the circular models are insignificant compared to the substantial reduction observed in the fossil category.

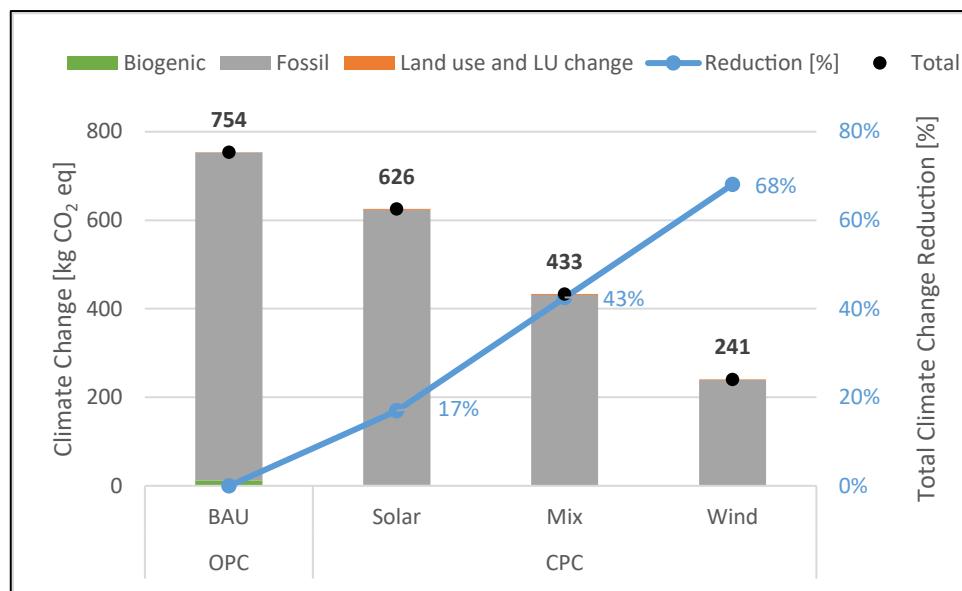
The reduction in climate change impact was expected due to the implementation of tail-end CaL technology, which captures a significant proportion of the CO₂ emitted, and its subsequent use to replace the current fuel mix. This mix presently comprises a notable fraction of fossil fuels (59 %) and alternative fuels (41 %), attributing to the fossil and biogenic specific categories, respectively. This technology captures both CO₂ from the flue gas of clinker production and all CO₂ formed in the calciner by fuel combustion, as shown in **Fig. 4**.

Consequently, there is a significant disparity in direct net CO₂ emissions (excluding indirect emissions from electricity) between the two systems, as depicted in **Fig. 5**.

The environmental impacts obtained from “EN 15804+A2 method” were subsequently normalised to the reference impact per person of EU-28, employing the “Environmental Footprint 3.1” normalisation set, as indicated in **Fig. 6**. Note that the ODP category is not included as it presented a normalised score close to zero across scenarios.

The comparative analysis shows that circular cement production from the proposed layout diminishes environmental impacts in the climate change and fossils resource use categories compared to the reference system. However, CPC exhibits unfavourable environmental outcomes particularly in minerals and metals resource use but also in terms of acidification and water use, in comparison to OPC. The remaining environmental categories are scenario-dependent.

The normalised environmental indicators show varying relative impact between the CPC and OPC models. The circular model notably manifests “minerals and metals resource use” and “eutrophication freshwater” as the most influential impact categories, whereas “climate change” and “fossil resource use” are more prominent in the OPC baseline scenario.


Eutrophication initiates with increases in nutrient loading into ecosystems, often constrained by nitrogen or phosphorus availability. The increased availability of these nutrients has stimulated primary production, resulting in adverse consequences, such as algal toxin accumulation and issues with taste and odour in drinking water [47]. The wind-based circular scenario exhibits a slightly more favourable marine eutrophication performance, while other circular scenarios perform worse than the BAU. Additionally, OPC exhibits a lower freshwater and terrestrial eutrophication than the circular model. This disparity can be attributed to the raw materials extraction process associated with renewable energy technologies. This offsets the benefits of CPC models, where captured CO₂ is converted into SNG for reintroduction as clinker kiln fuel, replacing solid fuels, including petcoke (a petroleum refining by-product). In contrast, the BAU scenario’s reliance on petcoke production contributes significantly to various environmental impacts, such as marine eutrophication. However, it is crucial to note that this trade-off is advantageous only in the context of the marine eutrophication performance of the wind-based CPC scenario.

The results revealed statistically significant differences in environmental impacts among the circular models, emphasising the role of the

Table 2

Environmental impacts of each scenario.

Impact category		Unit	OPC	CPC	
Main	Specific		BAU	Solar	Wind
Climate Change	Total	kg CO ₂ eq	7.54E+02	6.26E+02	4.33E+02
	Biogenic		1.23E+01	2.11E+00	1.34E+00
	Fossil		7.41E+02	6.22E+02	4.30E+02
Eutrophication	Land use and LU change		8.36E-01	2.17E+00	1.71E+00
	Marine	kg N _{eq}	2.05E-02	3.13E-01	2.13E-01
	Freshwater	kg P _{eq}	4.31E-01	6.57E-01	4.49E-01
Other	Terrestrial	mol N _{eq}	1.84E+00	6.86E+00	4.58E+00
	Acidification (AP)	mol H ⁺ eq	7.07E-01	3.51E+00	2.24E+00
	Ozone depletion (ODP)	kg CFC ₁₁ eq	5.04E-06	4.02E-05	2.34E-05
Resource use	Photochemical ozone formation (POCP)	kg NMVOC eq	1.59E+00	2.42E+00	1.63E+00
	Water use (WDP)	m ³ depriv.	6.22E+01	6.15E+02	4.00E+02
	Fossils	MJ	3.24E+03	2.05E+03	-2.84E+02
	Minerals and metals	kg Sb _{eq}	1.71E-04	2.09E-02	1.22E-02
					3.44E-03

Fig. 3. Climate change indicators [kg CO₂ eq] and reduced impact in the circular models [%].Fig. 4. CPC direct CO₂ emissions produced and captured [kgCO₂/t_{cement}].

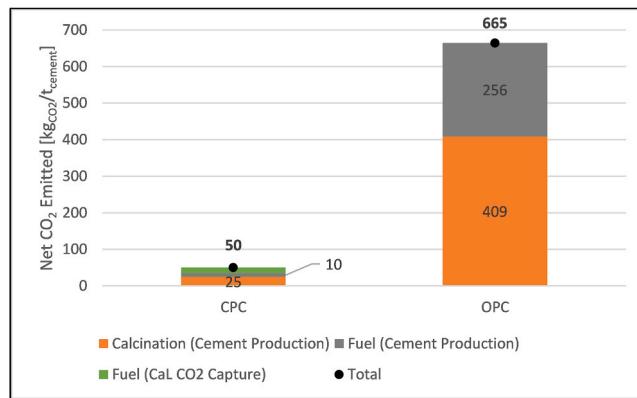


Fig. 5. Net CO₂ emitted in the CPC and OPC models.

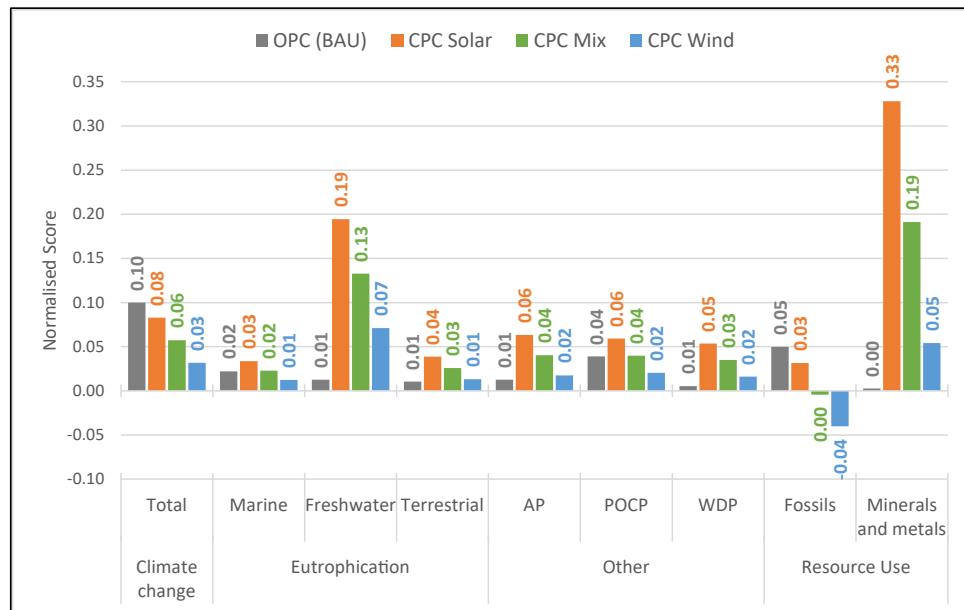


Fig. 6. EF 3.1 normalised results.

RES in the environmental performance. The wind energy based scenario exhibited the most favourable environmental outcome, followed by the mixed and finally the solar scenario. These results are supported by existing literature, including a recent cradle-to-grave LCA study affirming wind turbines' lower environmental impact compared to solar panels [48].

Fig. 7 illustrates a hot-spot analysis for the three CPC scenarios, highlighting environmental impacts mainly originate from electrolysis-related processes. Across categories, except for "climate change" and "fossil resource use" in the wind scenario, electrolysis-related processes consistently contributed from 63 % to 98 %. These findings align with a previous analysis of a similar design applied to a coal-fired power plant, which showed that the environmental footprint of electrolysis could reach 100 % [49].

The significant impact of electrolysis is attributed to its high electricity demand for producing the required amount of H₂ to convert CO₂ emitted at an industrial scale into SNG. Moreover, the adverse environmental impacts arising from oxygen production required for the CaL process have been allocated to the electrolysis category instead of the calcium looping, due to the absence of an energy-intensive ASU. Additionally, in contrast to the methanation, CaL CO₂ capture and electrolyser infrastructures, renewable energy infrastructure holds

considerable influence on the environmental performance of the CPC models.

In particular, the solar PV infrastructure exhibits a relatively high climate change impact. In fact, in the solar-based CPC model, the PV farm infrastructure contributes around 79 % of the total climate change impact, which corresponds to an emission of 494 kg CO₂-eq per tonne of CPC produced. This result is in contrast to the public perception of solar energy as carbon neutral, as the infrastructure production results in substantial indirect carbon emissions.

The methanation system used in the circular models significantly reduces the use of fossil resources compared to the BAU. This is due to the fact that, it not only avoids the consumption of solid fossil fuels but also prevents the extraction of natural gas from nature, considering the excess production of SNG, resulting in a "negative" impact for this category.

Wind turbines require specific resources, although in lower impacts associated when compared to solar panels. Notably, wind turbines rely on materials such as steel, fiberglass, and iron and rare earth materials such as neodymium whereas solar panels require silicon, aluminium, and glass. The latter materials used in solar panels need more processing, which consequently demands higher energy input [50,51]. As such, the "minerals and metals resource use" environmental indicator in

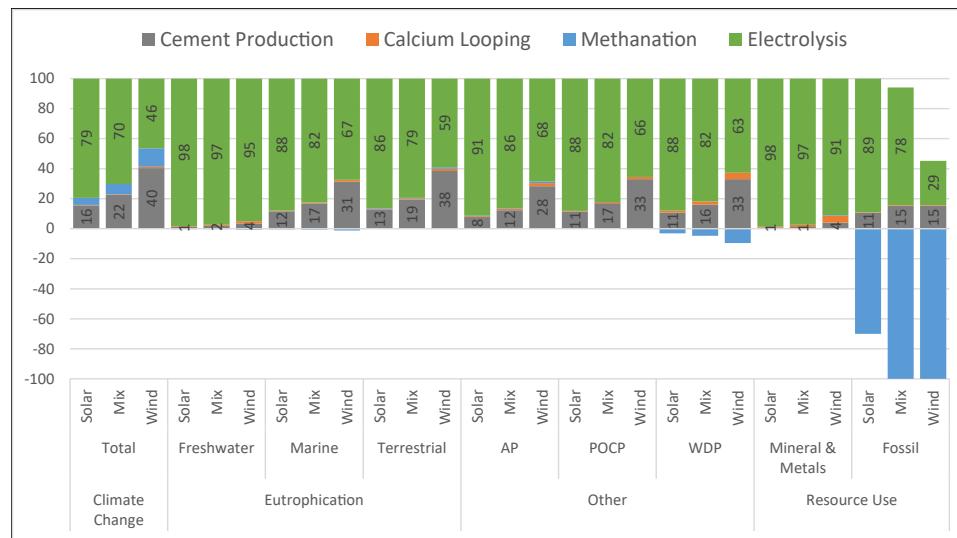


Fig. 7. Hot-spot analysis.

circular models, particularly in the solar scenario, is less favourable in comparison to the OPC model.

The increased water use in the circular models was expected since water is the main source of hydrogen for electrolysis. Furthermore, both solar and wind energy systems consume water during their manufacturing processes. However, operational water use for wind turbines is negligible as they require little maintenance and cleaning. Solar panels also have minimal operational water usage, primarily for periodic cleaning, but involve water-intensive procedures during production, such as cooling and rinsing, increasing the water demand compared to wind turbine production, as highlighted in a previous study [52].

Ozone depletion results consistently demonstrate a low impact across all models and scenarios. However, certain manufacturing stages for solar PV modules may contribute slightly more to ozone depletion compared to wind energy systems.

The raw materials used to produce electrolyzers, solar panels and wind turbines have an impact on acidification and photochemical ozone formation (POCP) categories. As a result, the current cement model performs better. Nonetheless, the POCP environmental impact is lower in the wind CPC model compared to OPC. The reason for this is again the decommissioning of solid fuels, in particular petcoke, which has a significant impact on the above categories.

When assessing the environmental impact of CPC in comparison to the OPC production model, it is important to consider the wider environmental context. A narrow focus on climate change or fossil fuel consumption would favour CPC, with significant reductions in CO₂ emissions. However, models for CPC suggest increased water use and varying effects on eutrophication, acidification and minerals and metals resource use. These trade-offs must be weighted for a comprehensive evaluation. Additionally, renewable energy infrastructure has a crucial role in shaping environmental outcomes. Notably, electrolysis-related processes, particularly those tied to renewable energy infrastructure, significantly influence CPC's overall impact. It is imperative to comprehend these primary contributors for the environmental footprint of the circular cement production proposed. This study highlights the complexity involved in shifting towards circular cement production and the importance of considering diverse environmental aspects.

3.1. Uncertainty analysis

The LCA methodology has limitations, particularly regarding uncertainty. This is most apparent during the inventory data phase, where

the absence of standardized and reliable data, as well as potential errors in data gathering, can result in an inventory that does not accurately represent reality. The values of certain inventory parameters can often vary significantly instead of remaining constant, which can significantly impact the accuracy and trustworthiness of LCA study outcomes. The Monte Carlo method is a numerical analysis technique based on probability and statistical theory. It uses random (or pseudo-random) numbers to solve various computational problems, providing a way to deal with the uncertainties present in LCA research [53,54].

The study employed a Monte Carlo simulation, with 20,000 iterations and a 95 % confidence level to assess the uncertainties in the LCA comparisons between the wind-based CPC and OPC models. Fig. 8 shows that in most environmental impact categories, one model outperforms the other, with over 90 % of the Monte Carlo runs significantly favoring one model. This significant percentage indicates a clear difference, suggesting minimal uncertainty in these comparisons. The notation "CPC Wind < OPC" indicates when the wind-based CPC model has a lower environmental impact than the OPC model. However, it is important to note that two categories, terrestrial eutrophication and water use in particular, have higher levels of uncertainty. The comparison indicates low uncertainty overall, but further investigation is needed to fully understand the environmental implications of choosing between the two models, particularly in the specific areas mentioned.

3.2. Sensitivity analysis

A sensitivity analysis was conducted to investigate how to minimize the environmental impact of the selected wind-based CPC model by optimizing key parameters within the electrolysis stage. This analysis builds upon the prior hot-spot analysis, which identified electrolysis as the primary contributor to environmental burdens, responsible for 63–98 % of the impact across various categories.

Due to its significant influence, the sensitivity analysis focuses on two critical LCI parameters that are specific to the electrolysis stage: water consumption and energy efficiency. Water consumption refers to the amount of water required by the electrolyser to produce hydrogen, measured in tonnes of water per tonne of hydrogen (t_{H2O}/t_{H2}). Energy efficiency represents the electricity demand of the electrolysis process, expressed as a percentage.

Three scenarios were modelled for each parameter: pessimistic (with increased water consumption/lower efficiency), medium (baseline), and optimistic (with decreased water consumption/higher efficiency). The specific values used for each scenario are presented in Table 3.

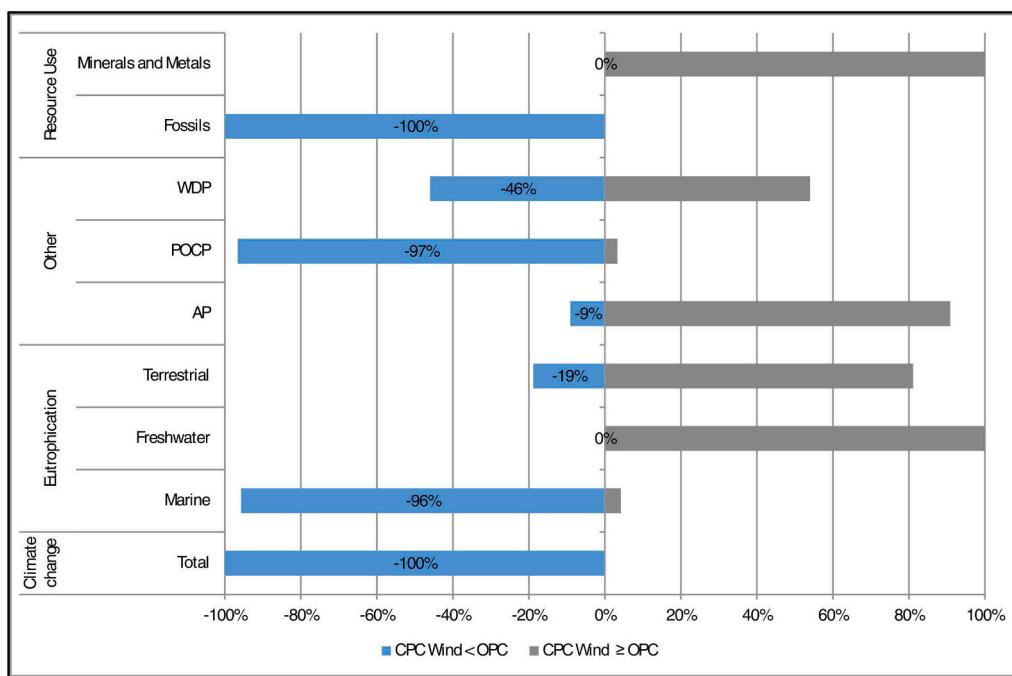


Fig. 8. Monte-Carlo simulation results of characterized LCIA comparison between wind-based CPC model and OPC.

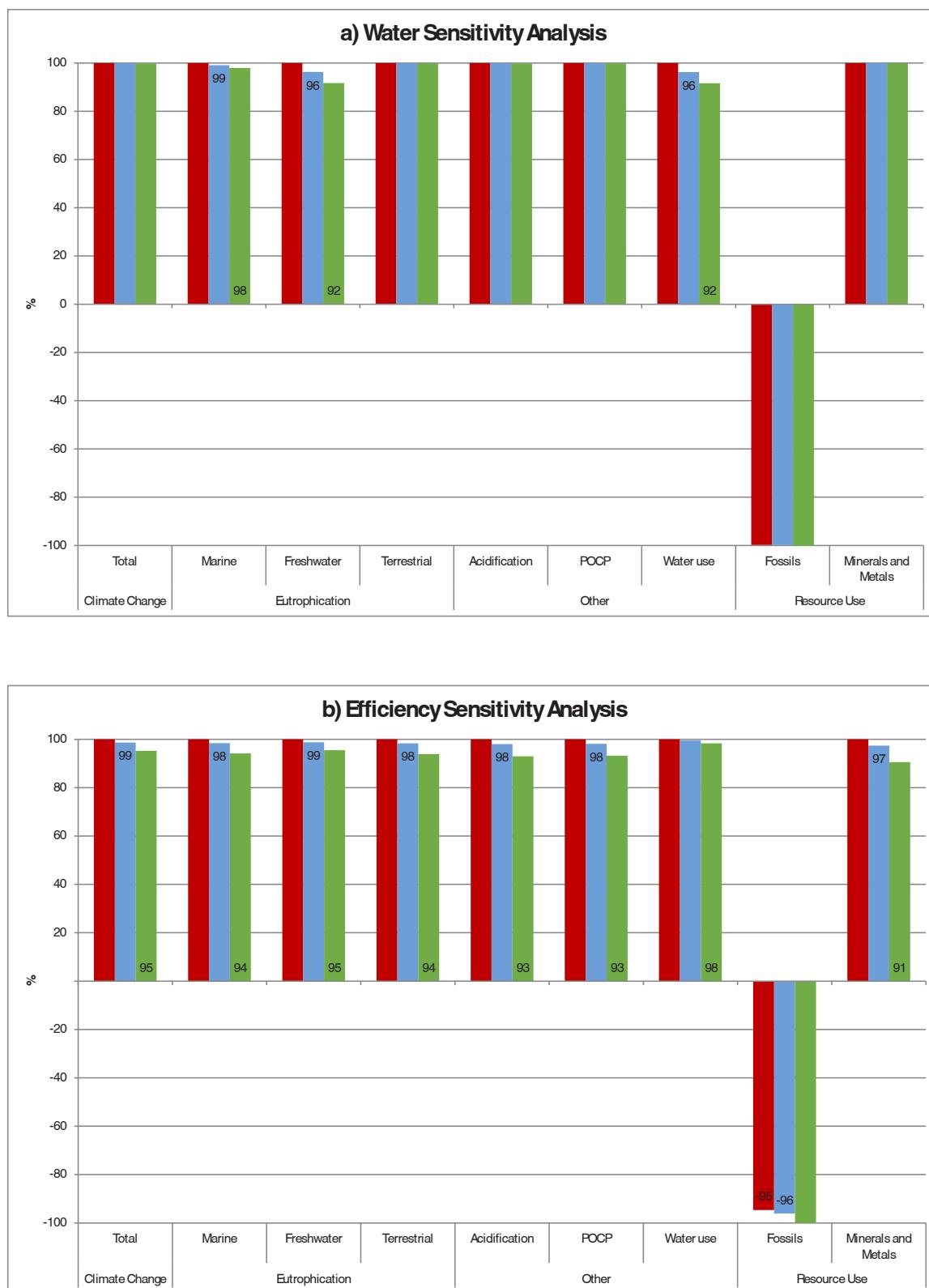
The sensitivity analysis employed in this study is known as one-at-a-time (OAAT) or perturbation analysis. In OAAT, the sensitivity of the model output to a specific input parameter is determined by the ratio between the variation in the model results and of the studied parameter itself [55].

The results of the sensitivity analysis are presented in Fig. 9. Fig. 9a focuses on water consumption, while Fig. 9b explores the impact of energy efficiency. The y-axis quantifies the change in environmental impact, with negative values indicating a decrease in impact and positive values indicating an increase. The x-axis shows different environmental factors potentially affected by the LCI parameters.

The sensitivity analysis revealed that the environmental impact of the wind-based CPC model is highly sensitive to the electrolyser's energy efficiency across all impact categories. While variations in water consumption also affect the model's environmental impact, this effect is mainly observed within water-related categories. It is worth noting that reducing the electrolyser's water requirements can significantly decrease water usage and its associated burdens on freshwater and marine ecosystems. This analysis underscores the critical role of optimizing energy efficiency in electrolyzers for minimizing the overall environmental footprint of the CPC model, with additional benefits attainable through reduced water consumption.

The analysis confirms that reduced water consumption generally results in a lower environmental impact across various categories, particularly within the "water use" impact category. This category specifically considers the volume of water used, taking into account regional water scarcity. Here, changing the water ratio by 7 % (red

column) resulted in a 3.9 % increase in water use impact. Conversely, a 9 % decrease in the water ratio (green column) led to a 4.8 % decrease in the same impact category. The analysis also shows that water-related eutrophication impacts, affecting both freshwater and marine environments, are sensitive to changes in the water ratio to varying degrees. Freshwater eutrophication is more sensitive, which reflects the trend in water use. In contrast, marine eutrophication is less sensitive, with only a 1 % difference observed between the pessimistic and optimistic scenarios compared to the baseline.


The sensitivity analysis supports the hypothesis that energy efficiency has a significant impact on environmental performance in all categories. The model is highly sensitive to this critical parameter of the electrolysis process. The results show a clear trend, where improved energy efficiency leads to a lower environmental impact across various factors, highlighting the effect of electric energy consumption on the environmental profile of the CPC model. A decrease in electrolyser efficiency results in higher energy consumption to produce the same amount of hydrogen. This leads to an increased environmental impact across all impact categories. Specifically, a 2 % reduction in energy efficiency worsens the environmental impacts by 1–3 % depending on the category, compared to the baseline.

Conversely, improving the efficiency of electrolyzers can significantly reduce their environmental impact. A 5 % increase in energy efficiency can lead to improvements ranging from 1 % to 7 % across various impact categories. This is particularly true for minerals and metals resource, where a 7 % improvement can be achieved due to lower reliance on renewable energy infrastructure, followed by acidification and photochemical ozone depletion, which can be improved by 5 %. For categories such as Climate Change or Eutrophication, a 5 % increase in energy efficiency results in an approximately 4 % reduction in environmental impact. However, the Water Use category shows the least sensitivity to energy efficiency improvements, with only a marginal 1 % enhancement noted. This is mainly due to the minimal impact of wind energy used in the selected CPC scenario on water consumption metrics.

Table 3

Analysed LCI parameters. NA=Not applicable.

Scenario LCI Parameter	Unit	Pessimistic	Medium	Optimistic
Water Ratio	[t H ₂ O/tH ₂]	10.70	10.0	9.1
	[Variation %]	+7%	NA	-9%
Efficiency	[%]	66	68	73
	[Variation %]	-2%	NA	+5%

Fig. 9. Sensitivity analysis of water ratio (a) and energy efficiency (b) impact on environmental factors. Red denotes pessimistic, blue medium, and green optimistic scenarios. Only significant changes (different from $\pm 100\%$) are shown.

4. Conclusion

The cement manufacturing sector's substantial carbon dioxide emissions have soured a critical need for mitigation strategies in the face of climate change. In response, a comprehensive life cycle assessment

(LCA) was conducted to assess the environmental impact of a traditional ordinary Portland cement (OPC) model, when compared to a circular Portland cement (CPC) proposed model, incorporating CO₂ capture, green hydrogen production from various renewable energy sources (RES) and the production of synthetic natural gas (SNG).

This methodology provides significant advances on current carbon capture and utilization (CCU) research, which typically focuses on comparing the CO₂ emissions of CCU products like SNG to conventional counterparts such as natural gas. In contrast, this paper adopts a broader industry-wide perspective, assessing the environmental implications resulting from the direct technological integration of these innovative processes. It compares the environmental impact of producing one cement tonne across different models.

The assessment adhered to the "EN15804 + A2 Method", tailored for construction product environmental product declarations. The results revealed that when focusing solely on climate change and fossil resource use, CPC models demonstrate significant environmental advantages. The reductions in CO₂ emissions, driven by carbon capture and fuel substitution, present a promising pathway towards more sustainable cement production. This aligns with the primary objective of assessing CPC's viability in reducing its environmental footprint.

However, CPC models showed increased water use and diverse impacts in categories like eutrophication, minerals and metals resource use, and acidification. These trade-offs emphasize the need for a holistic approach when evaluating the environmental sustainability of CPC, considering various environmental dimensions.

Furthermore, this research highlighted the pivotal role played by the renewable energy infrastructure, often overlooked in RES's sustainability assessments. Electrolysis-related processes linked to renewable energy sources played a dominant role shaping CPC's overall environmental impact. Considering the 13 indicators used for the environmental impact assessment, wind-based CPC model displayed the most favourable outcomes, followed by the mixed and solar scenarios.

This research provides valuable insights for stakeholders within the cement industry as they navigate the challenges and opportunities in adopting the proposed CPC production model. However, it is vital to acknowledge that the proposed model considers the complete transfer of CO₂ emissions from cement plants, at an industrial-scale, to the CO₂ capture unit.

This research provides a critical tool for advancing the environmental sustainability of the cement industry, for full scale deployment. In fact, it conducts a thorough assessment of the circular cement production model proposed, its associated renewable energy sources, and offers a comparative analysis with the current OPC model. It also highlights key factors contributing to the overall environmental impact of the proposed model, supporting an informed decision-making process towards a more sustainable cement production future.

In essence, the transition to circular cement production is a complex endeavor with multifaceted environmental implications. While there are clear advantages in terms of reducing CO₂ emissions and fossil resource use, it is essential to weigh these benefits against potential trade-offs in other environmental categories. Recognizing electrolysis as the key system contributor is vital for understanding and optimizing the proposed CPC production's environmental footprint.

Declaration of Competing Interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: M. Bacatelo reports a relationship with c⁵Lab that includes: employment. F. Capucha reports a relationship with c⁵Lab that includes: employment. If there are other authors, they declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data Availability

The authors do not have permission to share data.

Acknowledgements

This work was supported by the IST-ID (UIDP/50009/2020- FCT and UIDB/50009/2020- FCT) and c⁵Lab - Sustainable Construction Materials (CENTRO-04-3559-FSE-000096 and LISBOA- 05-3559-FSE-000008). The authors gratefully acknowledge the contribution of ATIC (Associação Técnica da Indústria de Cimento) for providing the necessary data to establish the reference scenario. Special thanks to Susana Ribeiro (Secil), António Mesquita (Cimpor) and Paulo Rocha (Cimpor) for their help and support.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.jcou.2024.102774.

References

- [1] C. Carbone, D. Ferrario, A. Lanzini, S. Stendardo, A. Agostini, Evaluating the carbon footprint of cement plants integrated with the calcium looping CO₂ capture process, *Front. Sustain.* 3 (2022) 1–14, <https://doi.org/10.3389/frsus.2022.809231>.
- [2] W. Schakel, C.R. Hung, L.A. Tokheim, A.H. Strømman, E. Worrell, A. Ramírez, Impact of fuel selection on the environmental performance of post-combustion calcium looping applied to a cement plant, *Appl. Energy* 210 (2018) 75–87, <https://doi.org/10.1016/j.apenergy.2017.10.123>.
- [3] M. Bacatelo, F. Capucha, P. Ferrão, F. Margarido, Selection of a CO₂ capture technology for the cement industry: an integrated TEA and LCA methodological framework, *J. CO₂ Util.* 68 (2023), <https://doi.org/10.1016/j.jcou.2022.102375>.
- [4] Annon. IEA, Technology Roadmap for Cement, 2018. (<https://feablob.core.windows.net/assets/cbaa3da1-fd61-4c2a-8719-31538f59b54f/TechnologyRoadmapLowCarbonTransitionintheCementIndustry.pdf>).
- [5] T. Terlouw, C. Bauer, R. McKenna, M. Mazzotti, Large-scale hydrogen production via water electrolysis: a techno-economic and environmental assessment, *Energy Environ. Sci.* 15 (2022) 3583–3602, <https://doi.org/10.1039/d2ee01023b>.
- [6] G. Matute, J.M. Yusta, N. Naval, Techno-economic model and feasibility assessment of green hydrogen projects based on electrolysis supplied by photovoltaic PPAs, *Int. J. Hydrol. Energy* 48 (2023) 5053–5068, <https://doi.org/10.1016/j.ijhydene.2022.11.035>.
- [7] A.M. Oliveira, R.R. Beswick, Y. Yan, A green hydrogen economy for a renewable energy society, *Curr. Opin. Chem. Eng.* 33 (2021) 100701, <https://doi.org/10.1016/j.coche.2021.100701>.
- [8] F. Rossi, C. Zuffi, M.L. Parisi, D. Fiaschi, G. Manfrida, Comparative scenario-based LCA of renewable energy technologies focused on the end-of-life evaluation, *J. Clean. Prod.* 405 (2023) 136931, <https://doi.org/10.1016/j.jclepro.2023.136931>.
- [9] J. An, R.S. Middleton, Y. Li, Environmental performance analysis of cement production with CO₂ capture and storage technology in a life-cycle perspective, *Sustain. (Switz.)* 11 (2019), <https://doi.org/10.3390/su11092626>.
- [10] K. Vatopoulos, E. Tzimas, Assessment of CO₂ capture technologies in cement manufacturing process, *J. Clean. Prod.* 32 (2012) 251–261, <https://doi.org/10.1016/j.jclepro.2012.03.013>.
- [11] J. Li, P. Tharakan, D. Macdonald, X. Liang, Technological, economic and financial prospects of carbon dioxide capture in the cement industry, *Energy Policy* 61 (2013) 1377–1387, <https://doi.org/10.1016/j.enpol.2013.05.082>.
- [12] D. Ipsakis, G. Varvoutis, A. Lampropoulos, S. Papaefthimiou, G.E. Marnellos, M. Konsolakis, Techno-economic assessment of industrially-captured CO₂ upgrade to synthetic natural gas by means of renewable hydrogen, *Renew. Energy* 179 (2021) 1884–1896, <https://doi.org/10.1016/j.renene.2021.07.109>.
- [13] M. Voldsgaard, R. Anantharaman, D. Berstad, E. De Lena, C.G. Fu, S. Osk, A. Jamali, J.-F. Pérez-Calvo, M. Romano, S. Roussanaly, J. Ruppert, O. Stallmann, D. SutterCEMCAP comparative techno-economic analysis of CO₂ capture in cement plants, (2019) pp. 1–93. <https://doi.org/https://doi.org/10.5281/zenodo.2597091>.
- [14] D. García-Gusano, D. Garraín, I. Herrera, H. Cabal, Y. Lechón, Life Cycle Assessment of applying CO₂ post-combustion capture to the Spanish cement production, *J. Clean. Prod.* 104 (2015) 328–338, <https://doi.org/10.1016/j.jclepro.2013.11.056>.
- [15] S.C. Galusnyak, L. Petrescu, C.C. Cormos, Environmental impact assessment of post-combustion CO₂ capture technologies applied to cement production plants, *J. Environ. Manag.* 320 (2022) 115908, <https://doi.org/10.1016/j.jenvman.2022.115908>.
- [16] T. Langhorst, L. Cremonese, J. Wunderlich, S. McCord, M. Bachmann, Y. Wang, G. Buchner, B. Winter, G. Stokes, Techno-Economic Assessment & Life Cycle Assessment Guidelines for CO₂ Utilization (Version 2), (2022), <https://doi.org/10.7302/4190>.
- [17] A.W. Zimmermann, J. Wunderlich, L. Müller, G.A. Buchner, A. Marxen, S. Michailos, K. Armstrong, H. Naims, S. McCord, P. Styring, V. Sick, R. Schomäcker, Techno-Economic Assessment Guidelines for CO₂ Utilization, *Front. Energy Res.* 8 (2020) 1–23, <https://doi.org/10.3389/fenrg.2020.00005>.
- [18] Ecoinvent, Ecoinvent Database v3.9.1, (2023). <https://doi.org/https://ecoinvent.org/>.

[19] REN, Technical Sheet 2022, Lisbon, Portugal, 2022.

[20] European Commission, Best Available Techniques (BAT) Reference Document for the Production of Cement, Lime and Magnesium Oxide, JRC Reference Reports, 2013, <https://doi.org/10.2788/12850>.

[21] J. Rissman, Cement's Role in a Carbon-Neutral Future, 2018. (<https://energyinnovation.org/wp-content/uploads/2018/11/The-Role-of-Cement-in-a-Carbon-Neutral-Future.pdf>).

[22] A. Rolfe, Y. Huang, M. Haaf, A. Pita, S. Rezvani, A. Dave, N.J. Hewitt, Technical and environmental study of calcium carbonate looping versus oxy-fuel options for low CO₂ emission cement plants, *Int. J. Greenh. Gas. Control* 75 (2018) 85–97, <https://doi.org/10.1016/j.ijggc.2018.05.020>.

[23] E. De Lena, M. Spinelli, I. Martínez, M. Gatti, R. Scaccabarozzi, G. Cinti, M. C. Romano, Process integration study of tail-end Ca-Looping process for CO₂ capture in cement plants, *Int. J. Greenh. Gas. Control* 67 (2017) 71–92, <https://doi.org/10.1016/j.ijggc.2017.10.005>.

[24] Carla I. Costa Pinheiro, Carbon emissions Reduction in the Cement Industry (CaReCI) Final Report: Detailed description of project activities and results, 2019. <https://fenix.tecnico.ulisboa.pt/homepage/ist12547/careci-final-seminar>.

[25] M.C. Romano, Ultra-high CO₂ capture efficiency in CFB oxyfuel power plants by calcium looping process for CO₂ recovery from purification units vent gas, *Int. J. Greenh. Gas. Control* 18 (2013) 57–67, <https://doi.org/10.1016/j.ijggc.2013.07.002>.

[26] M. Voldmund, D. Anantharaman, Rahul Berstad, G. Cinti, E. De Lena, M. Gatti, M. Gazzani, H. Hoppe, I. Martínez, J. Monteiro, G. Moretz-Sohn, M. Romano, S. Roussanaly, E. Schols, M. Spinelli, S. Størset, P. Van OsCEMCAP framework for comparative techno-economic analysis of CO₂ capture from cement plants (D3.2), 2018. <https://doi.org/10.5281/zenodo.1257111>.

[27] B. Arias, M. Alonso, C. Abanades, CO₂ capture by calcium looping at relevant conditions for cement plants: experimental testing in a 30 kWth pilot plant, *Ind. Eng. Chem. Res.* 56 (2017) 2634–2640, <https://doi.org/10.1021/acs.iecr.6b04617>.

[28] M. David, C. Ocampo-Martínez, R. Sánchez-Peña, Advances in alkaline water electrolyzers: a review, *J. Energy Storage* 23 (2019) 392–403, <https://doi.org/10.1016/j.est.2019.03.001>.

[29] D. Devaraj, E. Syron, P. Donnellan, Determining the optimal process configurations for synthetic natural gas production by analysing the cost factors, *Energy Rep.* 7 (2021) 6515–6529, <https://doi.org/10.1016/j.egyr.2021.09.078>.

[30] J. Baier, G. Schneider, A. Heel, A cost estimation for CO₂ reduction and reuse by methanation from cement industry sources in Switzerland, *Front. Energy Res.* 6 (2018) 1–9, <https://doi.org/10.3389/fenrg.2018.00005>.

[31] S. Shiva Kumar, H. Lim, An overview of water electrolysis technologies for green hydrogen production, *Energy Rep.* 8 (2022) 13793–13813, <https://doi.org/10.1016/j.egyr.2022.10.127>.

[32] M. Plevová, J. Hnát, K. Bouzek, Electrocatalysts for the oxygen evolution reaction in alkaline and neutral media: A comparative review, *J. Power Sources* 507 (2021), <https://doi.org/10.1016/j.jpowsour.2021.230072>.

[33] G. Varvoutis, M. Lykaki, S. Stefa, E. Papista, S.A.C. Carabineiro, G.E. Marnellos, M. Konsolakis, Remarkable efficiency of Ni supported on hydrothermally synthesized CeO₂ nanorods for low-temperature CO₂ hydrogenation to methane, *Catal. Commun.* 142 (2020), <https://doi.org/10.1016/j.catcom.2020.106036>.

[34] J.C. Koj, C. Wulf, A. Schreiber, P. Zapp, Site-dependent environmental impacts of industrial hydrogen production by alkalinewater electrolysis, *Energies* 10 (2017), <https://doi.org/10.3390/en10070860>.

[35] C. Sundin, Environmental Assessment of Electrolyzers for Hydrogen Gas Production Comparative LCA of Electrolyzers, KTH Royal Institute of Technology - School of Engineering Sciences in Chemistry, Biotechnology and Health, 2019. (<http://www.diva-portal.org/smash/get/diva2:1354467/FULLTEXT01.pdf>).

[36] H. Böhm, A. Zauner, D.C. Rosenfeld, R. Tichler, Projecting cost development for future large-scale power-to-gas implementations by scaling effects, *Appl. Energy* 264 (2020) 114780, <https://doi.org/10.1016/j.apenergy.2020.114780>.

[37] D.G. Faria, M.M.O. Carvalho, M.R.V. Neto, E.C. de Paula, M. Cardoso, E. K. Vakkilainen, Integrating oxy-fuel combustion and power-to-gas in the cement industry: a process modeling and simulation study, *Int. J. Greenh. Gas. Control* 114 (2022), <https://doi.org/10.1016/j.ijggc.2022.103602>.

[38] M.G. Plaza, S. Mart, F. Rubiera, CO₂ Capture, Use, and Storage in the Cement Industry: State of the Art and Expectations, *Energies* 13 (2020), <https://doi.org/10.3390/en13215692>.

[39] Global Hydrogen Review 2022, Global Hydrogen Review 2022. (2022). <https://doi.org/10.1787/a15b8442-en>.

[40] L.M. Ringsgwandl, J. Schaffert, N. Brücken, R. Albus, K. Görner, Current Legislative Framework for Green Hydrogen Production by Electrolysis Plants in Germany, *Energies* 15 (2022) 1–16, <https://doi.org/10.3390/en15051786>.

[41] Y. Wang, R. Schomäcker, S. McCord, P. Styring, A.V. Zaragoza, T. Langhorst, L. CremoneseSNG Worked Example for the TEA Guidelines for CO₂ Utilization, Global CO₂ Initiative. (2021). <https://deepblue.lib.umich.edu/handle/2027.42/167382>.

[42] Cimpor, Rumo à Neutralidade Carbónica, 2021. (https://www.cimpor.com/documents/20124/419696/RUMO_À_NEUTRALIDADE_CARBÓNICA_18.10.2021.pdf).

[43] E.V. Puga, G. Moumin, N.C. Neumann, M. Roeb, A. Ardone, C. Sattler, Holistic View on Synthetic Natural Gas Production: A Technical, Economic and Environmental Analysis, *Energies* 15 (2022) 1–27, <https://doi.org/10.3390/en15051608>.

[44] R. Chauvy, D. Verdonck, L. Dubois, D. Thomas, G. De Weireld, Techno-economic feasibility and sustainability of an integrated carbon capture and conversion process to synthetic natural gas, *J. CO₂ Util.* 47 (2021) 101488, <https://doi.org/10.1016/j.jcou.2021.101488>.

[45] T. Chwola, T. Spietz, L. Więcław-Solny, A. Tatarczuk, A. Krótki, S. Dobras, A. Wilk, J. Tchórz, M. Stec, J. Zdeb, Pilot plant initial results for the methanation process using CO₂ from amine scrubbing at the Łaziska power plant in Poland, *Fuel* 263 (2020), <https://doi.org/10.1016/j.fuel.2019.116804>.

[46] European Committee for Standardization, EN 15804:2012+A2 - Sustainability of construction works - Environmental product declarations - Core rules for the product category of construction products, 2013.

[47] B. Morelli, T.R. Hawkins, B. Niblick, A.D. Henderson, H.E. Golden, J.E. Compton, E.J. Cooter, J.C. Bare, Critical review of eutrophication models for life cycle assessment, *Environ. Sci. Technol.* 52 (2018) 9562–9578, <https://doi.org/10.1021/acs.est.8b00967>.

[48] J. Fischer, Comparing Wind and Solar Energy Impacts on the Environment: A LCA Approach Using openLCA Platform, Bryant University, 2021. (https://digitalcommons.bryant.edu/honors_science/26/).

[49] R. Chirone, A. Paullilo, A. Coppola, F. Scala, Carbon capture and utilization via calcium looping, sorption enhanced methanation and green hydrogen: a techno-economic analysis and life cycle assessment study, *Fuel* 328 (2022) 125255, <https://doi.org/10.1016/j.fuel.2022.125255>.

[50] Z.W. Zhong, B. Song, P.E. Loh, LCAs of a polycrystalline photovoltaic module and a wind turbine, *Renew. Energy* 36 (2011) 2227–2237, <https://doi.org/10.1016/j.renene.2011.01.021>.

[51] F. Capucha, Evaluation of Strategic Metals Envisaging the Sustainable Management Neodymium Flow and Stock Analysis in Portugal, Instituto Superior Técnico, 2019. (<https://fenix.tecnico.ulisboa.pt/departamentos/dem/dissertacao/1691203502343322>).

[52] J. Meldrum, S. Nettles-Anderson, G. Heath, J. Macknick, Life cycle water use for electricity generation: a review and harmonization of literature estimates, *Environ. Res. Lett.* 8 (2013), <https://doi.org/10.1088/1748-9326/8/1/015031>.

[53] S. Sun, M. Ertz, Life cycle assessment and Monte Carlo simulation to evaluate the environmental impact of promoting LNG vehicles, *MethodsX* 7 (2020) 101046, <https://doi.org/10.1016/j.mex.2020.101046>.

[54] M. Guo, R.J. Murphy, LCA data quality: sensitivity and uncertainty analysis, *Sci. Total Environ.* 435–436 (2012) 230–243, <https://doi.org/10.1016/j.scitotenv.2012.07.006>.

[55] E. Igos, E. Benetto, R. Meyer, P. Baustert, B. Othoniel, How to treat uncertainties in life cycle assessment studies? *Int. J. Life Cycle Assess.* 24 (2019) 794–807, <https://doi.org/10.1007/s11367-018-1477-1>.